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Vortex shedding in the near wake
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The dynamics of flexible parachute canopies and vortex shedding in their near wake
are studied experimentally in a water tunnel. The velocity field was measured by
particle image velocimetry for two different canopy diameters. The periodic oscillation
of the canopy diameter about a mean value which is referred to as ‘breathing’
has a non-dimensional frequency, based on the free-stream velocity and the mean
canopy projected diameter, of approximately 0.55 for the range of Reynolds numbers
examined. The dimensionless breathing frequency observed in the experiments is
consistent with the values for larger canopies. The shear layer emanating from the
canopy rolls up and sheds symmetric vortex rings. The frequency of vortex shedding
was measured to be the same as the canopy breathing frequency. This Strouhal
number is unique in the sense that it is much higher than those associated with rigid
axisymmetric bluff bodies such as disks and spheres. The canopy breathing is shown
to stem from the cyclical variation of suction pressure, resulting from the passage of
vortex rings, on the exterior surface of the canopy. The added mass associated with
the breathing of the canopy is found to be accountable for up to 40 % of the canopy
drag fluctuations in the range of parameters investigated.

1. Introduction
Round parachute canopies pose challenging problems for the understanding of

axisymmetric bluff-body wakes. Two features specific to fabric canopies differentiate
them from rigid bluff bodies such as cups, disks or spheres. First, and most
importantly, fabric flexibility allows large variations in the canopy geometry not
only in the inflation phase, but also during terminal descent. Secondly, there is
a small mean flow through the canopy surface owing to the fabric permeability,
amounting to a few per cent of the free-stream velocity. Given that bluff-body wakes
are unsteady, coupling of the time-dependent vortical flow in the near wake with
the flexible fabric geometry results in strong fluid–structure interaction. Moreover,
full-scale canopies operate typically at Reynolds numbers exceeding several millions.
The complexity of these issues has so far precluded a thorough examination of the
flow field in the near wake of parachute canopies. The flow structure in the near
wake is also responsible for the aerodynamic forces and moments experienced by the
canopy. We are interested in examining the dynamics of flexible canopies and the
relationship between the near-wake flow field and the canopy motions. Since there
is a general lack of data in the literature on the flow about flexible bluff bodies and
rigid hemispherical shells, the key flow features in the wake of disk and sphere are
presented below to provide a basis for comparison with the results of our study.
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Vortex shedding from spheres in incompressible flow has been studied extensively.
Numerical study of Natarajan & Acrivos (1993) indicates that the wake of a sphere
becomes unstable at a Reynolds number of 105 and the primary unstable mode
is non-axisymmetric, in concurrence with experimental observations. The structure
of sphere wake is complex and Reynolds-number dependent. Visual observations
have shown that vortices form a double helix (Pao & Kao 1977) or hairpin loops
(Achenbach 1974; Sakamoto & Haniu 1990) at Reynolds numbers of ∼ 103, whereas
at Reynolds numbers of ∼ 104 and beyond, the wake becomes completely turbulent
with quasi-periodically spaced vortex loops or rings (Taneda 1978). The primary
Strouhal number associated with vortex shedding in the sphere wake is ≈ 0.2 for
Reynolds numbers greater than about 103 (Achenbach 1974; Kim & Durbin 1988;
Sakamoto & Haniu 1990). Also, there is a higher-frequency mode close to the sphere
at a Strouhal number that increases with Reynolds number (Kim & Durbin 1988).
This mode is associated with the separated shear-layer vortices.

A circular disk is perhaps more representative of round canopies since the separation
line is fixed at the disk edge, analogous to the location of separation line near the
canopy skirt. Fuchs, Mercker & Michel (1979) and Berger, Scholz & Schumm (1990)
have examined the flow structure in the disk wake at Reynolds numbers of ∼ 104

using cross-spectral analysis at 3 and 9 disk diameters. Three instability modes have
been identified: an axisymmetric oscillation of the recirculation bubble at a low
Strouhal number of ≈ 0.05; a helical mode at a Strouhal number of ≈ 0.14; and
a high-frequency mode at a Strouhal number of 1.6 associated with the separated
shear layer. The mean recirculation bubble extends to about 2.5 diameters behind the
disk. Flow visualization of Higuchi (1991) confirmed the primary helical mode at a
Reynolds number of 104 in the disk wake. However, close-up observations in a water
tunnel revealed that the tilting of vortex rings results in asymmetric structures after
the first diameter in the disk wake. Smoke-flow visualization of Berger et al. (1990)
also indicated the formation of axisymmetric vortex rings in the immediate vicinity of
the disk; tilting and linking of the rings in the near wake create the helical structure.

The flow inside rigid cylindrical cups, with and without a central vent, was measured
by Lamberson, Higuchi & van Rooij (1999). The flow became stagnant (without the
central vent) or reduced to small velocities (with the vent) along the cup centreline.
Near wake of rigid cup-like bluff bodies in uniform flow has not been examined in
the past.

The characteristic features of parachute canopies during various phases from
deployment to terminal descent have been reviewed by Peterson, Strickland & Higuchi
(1996) and Strickland & Higuchi (1996). One of the features of the canopy dynamics
during terminal descent is the ‘breathing’ of the canopy where the maximum diameter
(typically at or near the skirt) oscillates about a mean value periodically. This is caused
by the interaction of the near-wake fluid forces with the flexible low-inertia fabric.
Similarly, the drag fluctuates about a mean value. Maydew & Peterson (1991) have
summarized drag and surface pressure measurements on sub- and full-scale canopies.
Moreover, limited near-wake flow measurements have been conducted using helium
bubbles (Klimas & Rogers 1977) and particle tracking (Lingard 1978) in the inflation
phase of laboratory-scale canopy models. However, no detailed measurements of
the flow field in the near wake of flexible canopies in a uniform stream have been
reported.

In this paper, we examine the breathing of flexible circular parachute canopies,
flow structure and vortex shedding in the near wake, as well as the relationship
between vortex shedding and the canopy dynamics. Our experimental approach uses
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Figure 1. Forebody support structure and the 15 cm canopy in the water tunnel.

small-scale fabric model canopies in steady uniform flow. The experimental set-up
is described in § 2, and the relevant dimensionless parameters are discussed in § 3.
Results are presented and discussed in § 4.

2. Experimental set-up
The experiments were conducted in a water tunnel at free-stream velocities in the

range 20 � U � 40 cm s−1. The free-stream turbulence intensity was measured to be
less than 1.3 % over this operating range. The water-tunnel test section had a 0.6 m
square cross-section and was 2.4 m long. Optical access was available through the
transparent Lexan� test-section walls.

The inflated canopy in the water tunnel and the supporting hardware are shown
in figure 1. The parachute assembly was positioned in a horizontal orientation. The
canopy was attached by 24 suspension lines to a stationary streamlined forebody.
The forebody had a diameter of 1.4 cm and a length of approximately 17 cm. The
cross-sectional area of the forebody was less than 2 % of the canopy projected area.
By streamlining the forebody and reducing its diameter, the forebody wake was kept
to a minimum. The forebody was supported by four 0.64 cm diameter rods in the
centre of the water-tunnel test section. Flow visualization confirmed that the wake of
forebody support rods had a negligible effect on the parachute canopy geometry and
dynamics.

A schematic diagram of an inflated canopy along with definitions of the relevant
canopy parameters is shown in figure 2. The constructed diameter, Do, refers to
the diagonal extent along the canopy surface, while Dm is the maximum projected
diameter. The axial extent (depth) of the canopy is denoted by H . The time-averaged
projected diameter, Dp , is based on the mean canopy projected area. Both H and Dm

vary periodically in time for round parachute canopies.
Two canopy models with constructed diameters of 15.2 cm and 30.5 cm were

fabricated. The models were created from a flat circular pattern, without a central
vent. The canopies were constructed from standard rip-stop nylon from one solid
piece of fabric. This fabrication technique minimized stiffness of the model canopies.
The 24 suspension lines were made from 100 µm diameter nylon thread and attached
to a mount on the forebody (shown in figure 1). The length of suspensions lines
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Figure 2. Schematic of a parachute canopy and the associated parameters.

Canopy Do (cm) U (cm s−1) Re εsb(%)

Small 15.2 20 3.0 × 104 2.5
15.2 25 3.7 × 104 2.5
15.2 30 4.5 × 104 2.5
15.2 35 5.2 × 104 2.5
15.2 40 5.9 × 104 2.5

Large 30.5 20 6.0 × 104 9.9

Table 1. Reynolds number and solid blockage for the two models.

was equal to the constructed diameter. Full-scale personnel parachutes typically have
about 30 suspensions lines.

Flat circular canopy geometries are known to have off-axis oscillations during
terminal descent. Weber & Garrard (1982) noted statically stable trim angles of 10◦

for small ribbon parachute canopies. In order to eliminate the off-axis oscillations,
a 500 µm diameter flexible nylon retention line was attached to the forebody and
passed through the apex of the canopy. The end of the retention line was held rigidly
far downstream of the canopy. The retention line restrained the canopy wandering
without adversely affecting the flexible nature of the canopy. The presence of the
retention line placed the canopy apex approximately 5◦ off centreline with respect to
the forebody and free-stream.

The Reynolds number, Re = U Do /ν, for a parachute canopy is commonly based on
the constructed diameter Do (ν is the kinematic viscosity). Using the mean projected
diameter would result in Reynolds numbers approximately 30 % smaller. Table 1
gives the Reynolds numbers as well as the tunnel solid blockage, εsb, for the two
models. Standard methods for calculation of the blockage ratio for bluff bodies and
parachute canopies in closed wind/water tunnels employ the projected area of the
canopy divided by the tunnel cross-sectional area (Maskell 1965; Rae & Pope 1984;
Cockrell 1987). Based on the mean projected diameters of 10.7 and 21.3 cm for the
two models, blockage ratios are 2.5 % and 9.9 %, respectively. Cockrell (1987) states
that blockage ratios up to 10 % can be readily corrected using Maskell’s method.
Macha & Buffington (1989) provide the following expression for the tunnel dynamic
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pressure correction, based on Maskell’s method. The dynamic pressure, qo, was cor-
rected by

qo = qou

[
1 + KM

CDuSp

ST

]
,

where qou
is the uncorrected dynamic pressure, KM is an empirically derived blockage

factor (see Macha & Buffington 1989), CDu
is the uncorrected drag coefficient of the

canopy, Sp is the projected area of the canopy diameter, and ST is the cross-sectional
area of the test section. The maximum dynamic pressure corrections were 2 % and
11.6 % for the 15 and 30 cm models, respectively. These values correspond to 1 %
and 5.6 % corrections for the free-stream velocity.

Although the effects of blockage on shedding frequency of axisymmetric bluff
bodies have not been investigated thoroughly in the past, West & Apelt (1982) have
carried out a careful study of blockage on drag coefficient and shedding frequency
of circular cylinders in the range of Reynolds numbers corresponding to those in
the present experiments. They conclude that for blockage ratios less than 6 %, the
effects of blockage on pressure distribution and the drag coefficient are small and
the Strouhal number is not affected by blockage. West & Apelt (1982) state that the
blockage effects become complex for blockage ratios up to 16 %. Their shedding-
frequency data show a 2.3 % increase in the Strouhal number at a blockage ratio of
10 %. Thus, assuming that similar effects are present for an axisymmetric bluff body,
the drag coefficient and the Strouhal number of our small model having a blockage
of 2.5 % should not be affected by blockage. Moreover, an increase of only a few per
cent is expected for the shedding frequency of the larger model with a blockage of
9.9 %.

Drag, F , on the canopy was measured by a load cell mounted inside the forebody
and attached directly to the suspension lines. The load cell was sampled at 150 Hz
with a 12-bit A/D card. The uncertainty of the drag measurement system was 0.027 N,
or 0.4 % at full scale of the load cell. The load cell was calibrated in situ prior to and
after each experiment.

Two types of experiment were conducted in the present study. The canopy geometry
and drag were measured simultaneously in one set of experiments, while the velocity
field and drag measurements were carried out in the other set of experiments. In the
former set, the variations of the canopy geometrical parameters such as the diameter
and depth were measured precisely. In the latter set, the velocity field was measured
by the particle image velocimetry (PIV) technique. Even though the canopy surface
could be extracted from the PIV images, the sampling rate and accuracy of canopy
geometrical parameters was less than in the former set. The reduced accuracy was a
result of the larger field of view and laser sheet illumination.

The canopy was imaged by a mega-pixel progressive-scan CCD camera with a
30 Hz frame rate. A 24 mm lens was used with a shutter speed of 1/250 s. The
images were digitally transferred in real-time to a PC. The camera was positioned
such that the side view of the parachute canopy appeared vertically oriented in the
images. To measure the canopy perimeter, the test section was backlit by a floodlight
through a white diffuser screen. This arrangement allowed for maximum contrast
between the canopy and background for ease of image processing. An automated
image-processing routine was developed to extract the maximum projected diameter,
Dm, and the canopy depth, H , from each image. The measurement uncertainty of the
maximum projected diameter and depth was 5 pixels ≈ 0.005 Do. The details of the
image processing routine can be found in Desabrais (2002).
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Canopy Do (m) Re δ/Do m/ρD3
o ζ

Small model 0.15 3.0 × 104 4.7 × 10−4 2.1 × 10−4 1.3 × 10−3

Large model 0.30 6.0 × 104 2.3 × 10−4 1.1 × 10−4 1.6 × 10−4

T-10 10.7 4.2 × 106 6.7 × 10−6 4.1 × 10−3 3.3 × 10−9

G-12 19.5 1.1 × 107 3.6 × 10−6 6.6 × 10−3 2.5 × 10−10

Table 2. Primary dimensionless parameters for laboratory and full-scale circular canopies.

In the PIV experiments, the entire water tunnel was seeded with neutrally buoyant
silver-coated glass spheres with an average diameter of 46 µm. The flow was
illuminated by a 3 mm thick sheet of laser light. The light source was a pair of
pulsed Nd:YAG lasers, each operating at 15 Hz. The laser pulse separation was in the
range of 3–6 ms. The CCD camera described above was used for PIV imaging, and
the imaged area was 20 × 20 cm2 and 24 × 24 cm2 for the smaller and larger canopies,
respectively. The data field extended from just upstream of the canopy to ∼ 1.7 Dp

downstream for the smaller canopy, and to 1.0 Dp for the larger canopy.
The cross-correlation technique was used to process the PIV images (Willert &

Gharib 1991; Raffel, Willert & Kompenhans 1998), resulting in a velocity field
sampling rate of 15 Hz. The image pairs were processed with a window size of 32 × 32
pixels, and 75 % window overlap. The resulting vector spacing was 1.7 and 2.0 mm for
the 15 and 30 cm canopies, respectively. For the cases in table 1, 1000 instantaneous
velocity fields were acquired. The azimuthal vorticity, ω, was calculated from the
velocity using a method outlined in Raffel et al. (1998). The average vorticity at a
grid point is estimated by evaluating the circulation around the eight neighbouring
points and dividing by the area enclosed by the eight points. Based on the sub-pixel
accuracy of the cross-correlation peak and particle displacements in the near wake,
the uncertainties in measured velocity and computed vorticity are estimated to be
3% and 8 %, respectively.

3. Dimensionless parameters
The primary dimensionless parameters relevant to a parachute canopy in steady

incompressible flow are the Reynolds number, fabric thickness ratio, canopy mass
ratio, a stiffness index, and permeability ratio (Lingard 1978; Lee 1989; Johari &
Desabrais 2003). Accounting for the entire parachute system including the payload
would further increase the number of dimensionless parameters notably. The large
number of dimensionless parameters precludes complete similarity at geometrical
scales significantly smaller than full-scale canopies using the same fabric. Thus, the
relative significance of each of the aforementioned dimensionless parameters (given
in table 2) needs to be addressed. The parameters for the US Army’s 35 feet (10.7 m)
T-10 and 64 feet (19.5 m) G-12 parachutes are also given in table 2.

Reynolds numbers of the small canopy models are two to three orders of magnitude
smaller than those of the full-scale canopies. It is commonly thought that the Reynolds
number may not significantly affect the large-scale flow in the near wake when the
flow is completely separated over the canopy exterior surface. This occurs once the
Reynolds number exceeds several thousand. Knacke (1992) has shown that Reynolds
number has little effect on the drag of a canopy over the range 105 < Re< 106.
Similarly, the drag coefficient and wake dynamics of a disk are Reynolds-number
independent for values greater than ∼ 103 (Hoerner 1965; Berger et al. 1990). Thus,
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the large-scale flow structure in the near wake is expected to be mostly independent
of Reynolds number.

Relative thickness of the canopy is characterized by δ/Do, where δ is the fabric
thickness. Because of the large diameters and thin fabrics used in a canopy, the
thickness ratios in table 2 are quite small for the model and full-scale canopies.
Even though the thickness ratios of model canopies are larger than their full-scale
counterparts by about two orders of magnitude, they are still small enough to render
the canopy effectively a two-dimensional surface.

Canopy mass ratio m/ρD3
o, where m is the canopy mass and ρ is the fluid density,

is an indicator of the inertia of the canopy fabric. Because of the large density of
water and the small mass of model canopies, the mass ratios of model canopies
are even smaller than those for the full-scale canopies. The small values given in
table 2 indicate that both model and full-scale canopies have relatively low inertia
and respond rapidly to the imposed forces and motions. Although the canopy mass
ratio is a dominant factor in the inflation phase, it does not appear to have a major
impact during the terminal descent phase.

The response of a canopy to the imposed forces depends on both the mass ratio and
a parameter specifying the material stiffness. Though different stiffness indices have
been proposed in the literature (Heinrich & Hektner 1971; Niemi 1990), we will use
Niemi’s relative stiffness index ζ =(E/ρU 2(1 − υ2))(δ/Do)

3, where E and υ are the
fabric modulus of elasticity and Poisson’s ratio, respectively. Since nylon fabrics used
in the construction of parachute canopies possess a complex stress–strain relationship,
data from uniaxial tests performed on nylon fabrics in the two in-plane directions
were used. The moduli in the two in-plane directions were averaged and used as an
equivalent modulus of elasticity. The numerical values of ζ in table 2 are based on
the equivalent modulus of elasticity and Poisson’s ratio presented by Niemi (1990).

The relative stiffness index ζ contrasts the strength of the fabric against the free-
stream dynamic pressure. The values in table 2 indicate that the small models are six
orders of magnitude stiffer than the full-scale canopies. Johari & Desabrais (2003)
have shown that canopy dynamics during the inflation phase is a weak function of
ζ . For example, normalized peak forces increase by a factor of 2 and opening times
reduce by a factor 3 when ζ increases by 7 orders of magnitude from the full-scale
values. Moreover, Weber & Garrad (1982) have shown that stiffness does not strongly
affect the stability of parachute canopies. Thus, we expect that the stiffness index plays
a small role during terminal descent since the canopy is fully open and the relative
motion of the canopy is significantly smaller than during the inflation.

Nylon fabrics used in parachute canopies are permeable, producing a net flow
through the fabric under an imposed pressure differential. Permeability is characterized
by an average velocity c across the canopy fabric; this velocity depends on the fabric
pore size and the pressure differential across the fabric. Permeability could possibly
affect large-scale vortical motions behind bluff bodies. The dimensionless permeability
ratio c/U is 1–2 % in our water-tunnel experiments, and 3–4 % during the terminal
descent of full-scale canopies (Lingard 1978). The permeability ratio of the models in
our set-up is thus fairly close to that of full-scale canopies.

Among the abovementioned parameters, the stiffness index and Reynolds number
are the ones that differ greatly between full-scale and model canopies. While the
Reynolds number affects the smaller scales and the flow in close proximity to the
canopy surface, stiffness is responsible for the overall geometry and the response
of the canopy to the imposed forces. As is shown in the next section, the mean
projected diameter and depth of the model canopies is close to the full-scale values.
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Figure 3. Average projected canopy diameter (open symbols) and depth (filled symbols) as a
function of Reynolds number. Circle and square symbols denote the 15 and 30 cm canopies,
respectively.

The normalized breathing frequency of full-scale canopies is also within 10 % of the
laboratory values. Consequently, even though complete similarity cannot be achieved
in our experiments, the use of incomplete similarity appears to be justified, at least
as it relates to the large-scale dynamics in the near wake.

4. Results
The results are presented in terms of the canopy geometry first, followed by the

average flow field, vortex shedding, near-wake structure, and drag measurements.

4.1. Canopy dynamics

To assess the changes in the canopy geometry, the maximum diameter Dm and depth
H were extracted from the canopy images. The time-averaged depth H̄ and projected
diameter Dp are plotted in figure 3. The data reveal that both geometrical parameters
remain constant over the range of Reynolds numbers in the experiment. Moreover,
the average diameter of Dp ≈ 0.71Do is consistent with the range of 0.67–0.70 Do

reported for full-scale canopies (Knacke 1992). The average canopy depth of H̄ ≈ 0.28
Do =0.40 Dp is also close to the 0.41Dp for the full-scale canopies. The correlation
coefficient between the projected diameter and canopy depth was in the range of −0.9
to −0.8 for all cases except at Re ≈ 6 × 104 where it was −0.5. The high negative
correlation indicates that as the canopy expands, its depth decreases (and vice versa).
The variation in the canopy geometry is restricted by the fixed canopy surface area.
The reduced correlation at the higher Reynolds number was due to loss of symmetry
of the canopy geometry.

The fluctuations of maximum diameter for the 15 cm canopy at Re ≈ 4.5 × 104 is
shown in figure 4(a). The data clearly indicate a periodic motion associated with the
canopy breathing. Similar time series were observed for all conditions given in table 1.
The root mean square (r.m.s.) amplitude of diameter fluctuations is 3–5 % of the mean
projected diameter, and the peak values are typically 7 % of Dp . Spectral analysis
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Figure 4. (a) Temporal variation of the maximum canopy diameter and (b) normalized
spectrum for the 15 cm model canopy at Re ≈ 4.5 × 104.

of the time series shows a single primary peak at 1.5 Hz in figure 4(b). Normalizing
this breathing frequency fb with the free-stream velocity and the mean projected
diameter results in a value of fb Dp /U ≈ 0.55. The normalized breathing frequency
for various conditions is presented in figure 5. For the range of Reynolds numbers
in our experiment, the normalized breathing frequency is nearly constant at ≈ 0.55
± 0.03.

To check how the normalized frequency of our small-scale models compares with
that of full-scale canopies, the average periods of breathing cycles for the 10.7 m
T-10 and 19.5 m G-12 parachute canopies were measured from video sequences. The
average breathing period for T-10 was 2.3 s, resulting in a normalized breathing
frequency of 0.51 (± 12 %). The normalized breathing frequency for the larger G-12
canopy was 0.50 (± 16 %). The rather large standard deviations stem from the
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Figure 5. Normalized canopy breathing frequency as a function of Reynolds number. Circle
and square symbols denote the 15 and 30 cm canopies, respectively.

uncontrolled environmental conditions during testing as well as the uncertainties
in the measured projected diameter and terminal speed. The normalized breathing
frequency of our models is within 10 % of these values, indicating that the breathing
phenomenon is only weakly dependent on the stiffness and Reynolds number.

Inspecting the instantaneous vorticity fields for a number of breathing cycles
revealed that the canopy attains its minimum diameter when the rolled-up vortex
cores were in the range of 0.5 Dp � z � 0.7 Dp , with the majority located at z ≈ 0.6 Dp .
Maximum canopy diameter occurred when the rolled-up vortex cores were not present
in the immediate vicinity of the canopy surface and the shear layer had not rolled
up into a new vortex ring. Thus, the passage of low-pressure vortex cores in the
near wake is responsible for the canopy breathing motions. Vortex shedding and
phase-locked vorticity fields are discussed in the following sections.

4.2. The mean flow

The mean velocity field was obtained by averaging 1000 instantaneous fields. For the
15 cm canopy at Re ≈ 3.0 × 104, the averaging period corresponds to approximately
67 breathing cycles. The streamlines and normalized vorticity field (ω Dp/U ) corres-
ponding to the time-averaged flow field are presented in figure 6. The canopy outline
is the average of all the instantaneous ones. The lower left-hand corner of the
images resulted in poor correlation during the PIV processing (owing to reduced
laser intensity), and affected data were removed. The near wake is characterized by a
recirculation bubble; curvature of the streamlines outside the bubble is noteworthy.
The mean vorticity field consists of a shear layer that separates near the canopy
skirt, and decays rapidly downstream. Secondary vorticity of opposite sign, visible
just above the canopy surface, is a result of the adverse pressure gradient imposed
by the passage of vortices close to the canopy surface. The asymmetry appears to be
due to the 5◦ misalignment of the canopy apex.

Radial profiles of the time-averaged axial velocity u and azimuthal vorticity ω are
plotted in figure 7 at z = 0.25, 0.5, 1.0 and 1.5Dp axial locations. Since the canopy
depth is ≈ 0.4 Dp , the profile at 0.25Dp does not extend to the wake centreline. Also,
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Figure 6. (a) Time-averaged streamlines and (b) vorticity contours for the 15 cm canopy at
Re ≈ 3.0 × 104. The lowest vorticity contour is at |ω Dp/U | =1.0 with increments of 1.0. The
time-averaged canopy outline is superimposed on the plots.

owing to the close proximity of the profile at 0.5 Dp to the canopy apex, this velocity
profile has a bump over the centreline. The radial velocity (not shown) is outward up
to z ∼ 0.8 Dp , and inward thereafter owing to the growth of the wake. As the shear
layer evolves downstream, the peak vorticity decays and the layer width increases.
The largest vorticity in the shear layer is at r ∼ 0.6 Dp near the canopy surface and
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Figure 7. (a) Radial profiles of the axial velocity and (b) vorticity for the 15 cm model
canopy at Re ≈ 3.0 × 104. The axial location of the profiles are noted on the plots.

moves out radially to r ∼ 0.8 Dp near the end of the data field. The axial velocity on
the centreline is plotted in figure 8. The negative values in the near wake indicate the
reverse velocity in the recirculation bubble. The axial velocity decreases to −0.36 U

at z ∼ 0.85 Dp , and it recovers to positive values for z > 1.6 Dp . The mean velocity
and vorticity profiles in the canopy near wake are generally consistent with those
associated with rigid bluff bodies.

4.3. Vortex shedding

Vortex shedding in the near wake of model canopies was examined from the Eulerian
(with a fixed probe in space) and Lagrangian (tracking of individual vortex formation
and movement) perspectives. The results are discussed below.

To examine the passage of vortices in the near wake, the radial velocity v at specific
locations (given in table 3) was extracted from the PIV datasets. The radial velocity
was chosen because it has a larger dynamic range than the axial velocity. Three
axial locations of z = 0.25, 1.0, 1.6 Dp , corresponding to a range extending from the
canopy proximity to the end of the dataset, were chosen. The radial positions given
in table 3 are based approximately on the locations where the largest radial velocities
were present in the average field.



Vortex shedding in the near wake of a parachute canopy 197

0.1

0

–0.1

–0.2

––
U

–0.3

–0.4
0.4 0.6 0.8 1.0

z/Dp

1.2 1.4 1.6 1.8

u

Figure 8. Axial velocity along the centerline. The canopy apex is at z ≈ 0.40 Dp .

Do (cm) z/Dp r/Dp

15.2 0.25 ±0.69
15.2 1.0 ±0.81
15.2 1.59 0.81
30.5 0.25 0.69
30.5 0.97 0.97

Table 3. Radial velocity probe locations.

The radial velocity traces for the 15 cm canopy at the z = 0.25 Dp is shown in
figure 9. Each trace corresponding to one side of the canopy has a quasi-periodic
character. The traces for locations farther downstream and for all conditions in table 1
are comparable. Spectral analysis of such traces for the 15 cm canopy at the closest
and farthest axial locations is shown in figure 10. In both spectra, there is a prominent
peak (marked by the arrows) at a Strouhal number St ≡ f Dp/Uof approximately
0.55 corresponding to the breathing frequency of the canopy. This peak was observed
for all the conditions given in table 1, and the average Strouhal number across the
range of Reynolds numbers in our experiments was 0.54 ± 0.04. Even though a peak
exists at a Strouhal number matching the canopy breathing frequency, there are other
distinct peaks. At the point closest to the canopy (figure 10a), there is a sharp peak
corresponding to twice the breathing frequency (i.e. a higher harmonic), and a broader
low-amplitude peak centred about a Strouhal number of 0.16.

The peaks at the farthest location (z = 1.6 Dp) are at Strouhal numbers of 0.16,
0.36 and 0.58. Aside from the canopy breathing frequency peak, the broad peak
at St ≈ 0.16 is similar to the St ≈ 0.14 associated with the disk wake in the same
Reynolds-number range (Berger et al. 1990). The other peak at St ≈ 0.36 appears to
be an aliasing artefact since it is halfway between the canopy breathing frequency
at 0.55 and that at 0.16. The appearance of the St ≈ 0.16 mode at this location is
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Figure 9. Time traces of the radial velocity for the 15 cm canopy at Re ≈ 3.0 × 104.
z/Dp = 0.25; r/Dp = +0.69 (solid) and −0.69 (dashed).
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Figure 10. Spectra of radial velocity fluctuations for the 15 cm canopy at Re ≈ 3.0 × 104.
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Figure 11. Trajectory of the vortex cores over 14 shedding cycles for the 15 cm canopy at
Re ≈ 3.0 × 104. The average canopy outline is shown.

consistent with it becoming the prominent peak at z = 3 and 9D in the disk studies of
Fuchs et al. (1979) and Berger et al. (1990). These spectra indicate that apart from the
breathing frequency associated with the canopy motions, the flow possesses a mode
at a frequency of St ≈ 0.16. This mode appears to be the asymmetric mode observed
farther downstream in past studies.

An alternative means for examining vortex shedding from a canopy is to track
the individual vortices formed in the near wake. The position of vortex cores was
measured from the instantaneous PIV datasets by passing a Gaussian kernel over the
vorticity field and locating the peak (positive and negative) vorticity. The location of
vortex cores in the wake of the 15 cm canopy at Re ≈ 3.0 × 104 is shown in figure 11
for a period of 14 breathing cycles. Very close to the canopy, the peak vorticity is
associated with the shear layer that has not rolled-up yet. The trajectory of vortex
cores indicates a fairly repeatable roll-up process near the canopy, followed by the
expansion of the wake as the vortices move downstream. The wake growth is evident
by the increase in the width of the mean vortex position at the locations further
downstream. Examination of individual vortex core traces revealed that symmetric
vortex rings are formed in the shear layer. The vortex rings are then shed into the
wake once they reach an axial location of about 1 Dp . Beyond this location, individual
vortex rings lose their coherence and begin to tilt away from the centreline.

A time trace of the axial position of vortex cores for four breathing cycles is
presented in figure 12 for the 15 cm canopy at Re ≈ 3.0 × 104. The periodic formation
and shedding of vortices is indicated by the sawtooth pattern in the data. The vortex
cores are only tracked until a stronger vortex emerges upstream. After that, the newer
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Figure 12. Temporal variation of the vortex core axial location for the 15 cm canopy at
Re ≈ 3.0 × 104. Four breathing cycles are depicted.

vortex is tracked. The linear patterns in figure 12 reveal a nearly constant vortex
celerity in the near wake. The average celerity of vortex cores, calculated from the
slope of the linear portions in figure 12, is 0.41 U (± 5 %). The average period of the
sawtooth pattern for the entire dataset associated with figure 12 is 1.8 Dp/U (± 7 %),
corresponding to a vortex shedding frequency of 0.55 U/Dp . This is in agreement with
the Strouhal number found from the spectral analysis of the radial velocity data. In
addition, the close correspondence between the axial location of the left and right
vortex cores indicates the initial symmetry of the vortex ring, at least in z/Dp < 1.
This symmetry degrades at locations further downstream, and as Reynolds number
increases.

The Strouhal number of 0.55 found in the near wake of flexible canopies is unique
in the sense that it is much higher than the reported shedding frequencies for rigid
disks (St ≈ 0.14) and spheres (St ≈ 0.2) at similar Reynolds numbers. We believe this
is due to the low-inertia flexible canopy being forced synchronously by the roll-up
and shedding of the vortices in the shear layer. Although the disk shear layer also
rolls up symmetrically (Berger et al. 1990), there is no mechanism for the separation
point, which is fixed at the disk edge, to respond to the imposed pressures. On the
other hand, the separation point on the canopy, which is near the skirt, moves in
space as a result of the canopy motions. Away from the canopy surface, we expect
the vortex rings to tilt and link forming helical motions similar to those observed in
rigid axisymmetric bluff bodies. The high-frequency mode associated with the shear
layer of spheres is also different from the breathing frequency reported here since the
former is at much higher Strouhal numbers (approximately a factor of 4 larger at
similar Re) and is strongly Reynolds-number dependent (Kim & Durbin 1988). Thus,
the Strouhal number of 0.55 appears to be unique to flexible canopies, and has not
been observed previously in rigid bluff-body studies.

4.4. Near-wake structure

To examine structure of the canopy near wake and to identify the coherent vortical
motions, the data fields were phase-averaged. The vortex-shedding/breathing cycle
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Figure 13(a–d). For caption see next page.

was divided into 15 equally spaced phases (for the 15 cm canopy at Re ≈ 3.0 × 104).
The choice of 15 phases was dictated by the PIV sampling rate of 15 Hz and the
breathing cycle having a period of 1 s.

Vorticity fields for eight of the 15 phases are shown in figure 13; the canopy
outline shown is also a phase average of the canopy geometry. Data in the lower
left-hand corner have been removed as noted earlier. The roll-up of the shear layer
into a vortex ring and the eventual shedding of the ring is evident in this sequence.
Figure 13( f ) shows the phase at which the rolled-up vortex has completely separated
from the shear layer and the vortex core is located at ∼ 1 Dp . The canopy has its
maximum diameter at this point in the breathing cycle. Subsequently, the pinched-off
vortex moves downstream and a new vortex rolls up in the shear layer. Appearance
of opposite-signed vorticity between the shear layer and the canopy surface, owing to
the imposed adverse pressure gradient, is indicative of a rolled-up vortex in the shear
layer. Such opposite-signed vorticity (dashed contours underneath solid contours and
vice versa) is discernible in figure 13(a–c, g, h). Furthermore, the nearly symmetric
nature of the vortex ring formation and shedding can be seen at various phases in
figure 13. Similar features were also observed for the 30 cm canopy.
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Figure 13. Phase-averaged vorticity fields for the 15 cm canopy at (a) 24◦, (b) 72◦, (c) 96◦,
(d) 144◦, (e) 192◦, ( f ) 240◦, (g) 288◦ and (h) 336◦. Solid and dashed contours indicate
positive (counterclockwise) and negative (clockwise) vorticity. The lowest vorticity contour is
at |ω Dp/U | = 3.0 with increments of 1.5.

The peak vorticity, core position and circulation of the rolled up vortices were
measured from the phase-averaged fields. The peak vorticity is plotted in figure 14
for the primary vortex visible in all 15 phases. The data show a decreasing peak
vorticity as the vortex progresses downstream. Also plotted in figure 14 is the shortest
distance, s, between the vortex core and the canopy surface. It turned out that the
shortest distance was typically between the core and the canopy ‘shoulder’ area (the
area beneath the opposite signed vorticity). The distance s is required in order to
estimate the suction pressure imposed on the canopy surface by the rolled up vortices.
As expected, s increases with the downstream progression of the primary vortex. The
vortex circulation could not be completely accounted for in the phases where the
vortex started to drift outside the boundary, see figure 13(d–h). For cases where a
portion of the vortex was outside the boundary, the circulation was estimated by
assuming the vortex core to have a Gaussian distribution of radius a. The latter
was estimated from the available vorticity distribution. Thus, the circulation was
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Figure 14. Maximum vorticity (filled symbols) and shortest distance (open symbols) between
the vortex core and the canopy surface as a function of phase angle for the 15 cm canopy at
Re ≈ 3.0 × 104. Letters refer to the phases in figure 13.

computed for these cases by Γ ≈ π a2ωmax . The vortex radius a increased from about
1.3 to 1.8 cm for the vortex cores in figure 13.

To relate breathing of the canopy with the near-wake vortex dynamics, we attempted
to correlate the position and circulation Γ of the rolled up primary vortex with the
canopy motions. The breathing is expected to be a result of the pressure variations on
the exterior surface of the canopy since pressure on the interior surface is almost at the
stagnation value (Johari, Stein & Tezduyar 2001). Neither the vortex core location nor
the circulation could individually be correlated with the maximum canopy diameter.
To estimate the relative variation of the pressure on the canopy surface, we used the
expression for the pressure field of a free vortex, i.e.

p − p∞ = − ρ Γ 2

8 π2 s2
.

The estimated maximum suction pressure coefficient, − Cpmax =(Γ /2π s U )2, on the
canopy surface, derived from the above expression, is plotted against the maximum
canopy diameter in figure 15. The vortex properties are those from the right-hand side
of the vorticity fields; the secondary counter-rotating vortices and other small-scale
vortices are excluded here. Only the circulation associated with the primary rolled
up vortex core is accounted for in the suction pressure estimates; the circulation of
the subsequent vortex (see figure 13h) is ignored. The data in figure 15 indicate a
clear dependence of the maximum diameter on the estimated surface pressure. As the
suction is reduced, the canopy expands to its maximum diameter. Increased − Cpmax

brings about reduced canopy diameters. It should be noted that suction pressure acts
primarily on the canopy ‘shoulder’, and away from the skirt. Thus, increased − Cpmax

pulls the upper portion of the canopy in the axial direction, causing a reduction
in the canopy maximum diameter. Removal of the suction pressure results in the
canopy reaching its maximum diameter. Note that there are other vortices in the
field that contribute to the surface pressure and which are not taken into account;
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Figure 15. Maximum suction pressure coefficient on the canopy surface as a function of
canopy maximum diameter for the 15 cm canopy at Re ≈ 3.0 × 104. Letters refer to the phases
in figure 13.

see for example the vortex core in the upper right-hand corner and the secondary
vortex in figure 13(a). Even though the computed maximum suction pressure is only
an estimate, we believe that it provides sufficient evidence for the direct correlation
between the canopy breathing and near-wake vortex dynamics.

4.5. Drag

Drag on the canopy was measured by a load cell in the forebody, and is normalized
by the corrected dynamic pressure and the mean canopy projected area (π D2

p/4).
No correction for the forebody wake effects was applied. Drag coefficient for the
15 cm canopy at Re ≈ 3.0 × 104 is shown in figure 16 for a period corresponding to
approximately four breathing cycles. Simultaneous measurements of the maximum
canopy diameter are also plotted in figure 16. Evident are large departures of drag
from its mean, with a standard deviation equal to 27 % of the mean drag. Similar large
fluctuations of drag were also recorded for all cased examined here. In contrast to
common belief (Knacke 1992), the drag fluctuations do not appear to be a direct result
of the canopy diameter oscillations. The peaks in drag are not at the same instants as
the peaks in diameter. The canopy diameter oscillations are periodic with a standard
deviation of ∼ 4.5 % of the mean value. Thus, a simple calculation of drag with the
varying canopy area cannot explain the 27 % standard deviation. Moreover, compu-
tation of the correlation coefficient between drag and canopy diameter, based on ∼ 40
breathing cycles, revealed a weak negative correlation (– 0.14) at the lowest Reynolds
number, and an even smaller positive correlation (+ 0.06) at the highest Re ≈ 6.0 × 104.
Hence, another source seems to be responsible for the measured drag fluctuations.

The relative effect of canopy diameter oscillations on the drag fluctuations was
examined through the component stemming from the unsteady potential flow around
the canopy. Although potential flow drag is commonly associated with free-stream
acceleration, the former is also present in steady flow around an expanding object.
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time for the 15 cm canopy at Re ≈ 3.0 × 104. Horizontal lines indicate the average values.

For a spherical bubble expanding in rectilinear flow, Ohl, Tijink & Prosperetti (2003)
found the potential flow drag to be 0.5 ρV̇ U . Here, V̇ represents the rate of bubble
volume expansion.

Potential flow calculations of Ibrahim (1967) for a rigid hemispherical cup resulted
in a drag of 4.475ρR3U̇ , where R is the hemisphere radius. This expression can be
rewritten as 2.14ρV U̇ , with V representing the enclosed volume of the hemisphere.
Thus, a hemisphere has an added mass of 2.14ρV . If we assume the canopy can be
approximated as a hemispherical cup, then the force contributed by the added mass
for a flexible hemisphere in steady flow would be Fam ≈ d(2.14ρV U )/dt = 2.14ρV̇ U ,
where V̇ is the time rate of change of the enclosed volume.

The force on the canopy contributed by the added mass term was found from
the time history of the volume enclosed by the canopy. The volume was computed
from the measured instantaneous boundary, assuming a body of revolution formed
by the imaged two-dimensional canopy slice. As expected, the enclosed volume also
oscillated periodically at the breathing frequency. The sign of Fam changes as the
canopy expands and contracts during each cycle, resulting in a mean value of zero.
The r.m.s. value of Fam was found to be 39.8 % of the measured drag standard
deviation at Re ≈ 3.0 × 104. This ratio decreased to 21.3 % as the Reynolds number
was increased to 6.0 × 104 for the smaller model. The r.m.s. value of Fam for the
larger model was 9.3 % of the measured drag fluctuations. The relative contribution
of Fam fluctuations to the drag fluctuations seems to depend on both the Reynolds
number, as inferred from the smaller model data, and mass ratio, comparing the
large and small models, for the cases examined here. Data over a broader range of
these parameters is required to elucidate conclusively their separate effects on the Fam

variations. Aside from these considerations, the added mass appears to play a role in
the drag fluctuations, at least for the small models in the present experiments.

Spectral analysis of the drag time series showed peaks corresponding to Strouhal
numbers of 0.16 and 0.57. The latter is associated with the canopy breathing/vortex-
shedding mode discussed earlier. The St ≈ 0.16 is the same as that found in the radial
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velocity data, and is consistent with the asymmetrical mode observed in disk wakes
(Berger et al. 1990).

5. Concluding remarks
It has been demonstrated that the shear layer emanating from the canopy rolls up

and forms a symmetric vortex ring within the first mean projected diameter from the
canopy skirt. Subsequently, the vortex separates from the shear layer and is shed. The
roll-up and shedding process occurs at a Strouhal number of 0.55, higher than any
previously reported value for disks and spheres. The normalized breathing frequency
of the canopy also has the same value, indicating the direct relationship between
vortex shedding and canopy breathing. The observed Strouhal number is independent
of Reynolds number within the range investigated here, and furthermore, may be
only weakly Re dependent at Reynolds numbers up to ∼ 107. Full-scale canopies have
normalized breathing frequencies approximately 10 % lower than the value for the
models employed in our study. The reduced breathing frequency is a weak function
of canopy stiffness and/or Reynolds number.

The relationship between vortex shedding and canopy breathing was shown to be
through the variation of the suction pressure on the exterior surface of the canopy,
caused by the cyclic formation and shedding of the vortices in the near wake. As
the vortices pinch off from the shear layer and move away from the canopy surface,
suction on the canopy surface is relieved and it expands to its maximum diameter.
Minimum canopy diameter is associated with strong vortices being present close
to the upper portion of the canopy. Even though canopy diameter variations and
drag fluctuations are not directly correlated, canopy breathing affects drag indirectly
through the added mass effect associated with the variations in the canopy enclosed
volume.

The observation of vortex shedding in the near wake of parachute canopies having a
Strouhal number much greater than those associated with disks (≈ 0.14) and spheres
(≈ 0.2) in the same Reynolds-number range shows that flexible bluff bodies have
different near-field characteristics. The low-inertia fabric readily responds to fluid-
imposed pressure distribution and this creates a strong fluid–structure interaction in
the near wake affecting vortex formation and dynamics. However, farther downstream,
vortex characteristics in the canopy wake are expected to become similar to rigid bluff
bodies. Evidence for emergence of a mode at Strouhal number ≈ 0.16 was seen in our
data at 1.6 diameters downstream.
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